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Error Analysis of pversion discontinuous Galerkin method 

for heat transfer in built-up structures 

H. Kaneko and K. S. Bey 

Abstract 

The purpose of this paper is to provide an error analysis for the pversion of the discon- 

tinuous Galerkin finite element method for heat transfer in built-up structures. As a special 

case of the results in this paper, a theoretical error estimate for the numerical experiments 

recently conducted by James Tomey [7] is obtained. 

Key words: Discontinuous Galerkin Method, Parabolic Equations, pFinite Element Method. 

1 Introduction. 

The purposes of this paper are to report the state of the art information on time discretization 

techniques in the discontinuous Galerkin method for parabolic problems (this section) and to 

establish error analysis for pversion of the finite element method for such problems (section 

2). Also a discussion of various time discretization techniques are included (section 3). The 

discontinuous Galerkin method is applied to the following standard model problem of parabolic 

type: 

Find u such that 

where R is a closed and bounded set in R3 with boundary 80, Rf = (0, GO), Au = d2u/dx2 + 
d2/dy2 + d2u/dz2, ut = &/at, and the functions f and ~0 are given data. In this paper, region 

0 is assumed to be a thin body in R3, such as a panel on the wing or fuselage of an aerospace 

vehicle. pversion of the finite element method is considered in all directions including time 

variable. Because of the special characteristics of the region, it. is assumed that, through the 

thickness, only one element is taken. This allows us to avoid construction of finite elements 
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that are too thin to violate the quasiuniform condition (see (1.11) below). The recent paper [5] 

addresses the similar issue under the framework of the 'modified' hp-finite element scheme. For 

a Banach space X and I = (0 ,T)  indicating a time interval, we denot,e by U ( I ;  X ) ,  1 5 p 5 00, 

and H k ( I ; X ) .  0 5 k E R, the Lebesgue and Sobolev spaces. Also P p ( I ; X )  denotes the set 

of all polynomials of degree 5 p with coefficients in X ,  i.e., q ( t )  E P p ( I ; X )  if and only if 

q ( t )  = C;==oxjtj for some xj E X and t E I .  Let TI be a partition of I into M ( I )  subintervals 

{ I ,  = (t,-l,  tn)},"=':). We set k, = t ,  - tn-l. Denote by u,' and u; the right and the left limits 

of u at t ,  respectively. We set [u], = u,' - u;, n = 1, .  . . , M ( I )  - 1. For each time interval I,, 

an approximation order p ,  2 0 is assigned and they are stored in the vector p = {p,},"=':'. The 

semidiscrete space is then given by 

If fl is a constant vector, i.e., p ,  = p for all 1 5 n 5 M ( I ) ,  then we write Vp(T1;X). The 

~ = ~ ~ b e r  of degrees of freedom of the t i g e  discretimtion will he denoted by NRDOF(Vp(T1; X ) )  

and it is, of course, equal to C,M_(:)(p, + 1). The semidiscrete solution U E PPn(In;X) of the 

problem ( l . l ) ,  if U is already determined on Ik, 1 5 k 5 n - 1, is found by solving the following 

problem: 

Find U E PPn(In; X )  such that 

for all V E PPn(In; X )  and UF = 210. 

Here we assume that L2(Cl) is densely embedded in a Banach space X .  The following theorem 

and its subsequent corollary are reported in [lo]. Theorem describes the error estimate for the 

semidiscrete solution explicitly in terms of the time steps, the approximation orders and the 

local regularities of the solution. 

Theorem 1.1 Let u be the solution of (1.1) and U the semidiscrete solution in Vp(T1;X). 

Assume that U I I ,  E HSn+'(I,;X) for 1 5 n 5 M ( I )  and s,, 1 5 n 5 M ( I ) ,  nonnegative 

integers. Then 
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In the pversion of the discontinuous Galerkin finite element method, a temporal partition TI is 

fixed and convergence is obtained by p ,  --f 30. For p,  = p for each n = 1. . . . , h.i(I). and for a 

smooth solution u, we obtain the following: 

Corollary 1.2 Let p ,  = p f o r  each n = 1,. . . M(1)  and IC,,, = max{k}. Let u E HsO+’(I ;  X ) ,  

f o r  a nonnegative integer SO, be the exact solution of (1.1) and U E VP(T1; X )  the semidiscrete 

where C depends on  SO, but is independent of IC,,, and p .  

Remark 1.1: As pointed out in [lo], Corollary 1.2 shows that for smooth solutions where 

SO is large, it is better to increase p than t,o reduce IC,,, at a k e d ,  often low p. Since N 

NRDOF(VP(T1; X ) )  - p ,  we see that for pversion of the finite element method, 

Using the standard approximation theory for analytic functions (1.3) reduces to 

for some b > 0 independent of p .  If the solution is not smooth in time, it is still possible to 

approximate it in exponential orders by a hpfinite element method which combines a certain 

geometric partition with the semidiscrete space VP(TI; X )  where p is linearly distributed, (see 

[lo] for detail). Using the h-finite element method with non-uniform graded time partitions, 

such non-smooth solutions can be approximated in an algebraically optimal order, but not 

exponentially, using different approaches, (see, e.g., 151, [lo]). The standard pfinite element 

method does not perform well in this context. Therefore, since we aim to establish the pversion 

of the finite element method for ( l . l ) ,  we assume for the remaining of this paper that solutions 

are smooth in time. This assumption allows us to establish the order of approximation in time 

variable that is compatible with the approximation orders in the spatial variables. 

Now we consider the problem of discretizing the space 0. For simplicity, we assume that 

1 d d  K x [-- -1, 
2 ’ 2  

M ( h )  d d  
2 2  

n = w x [--, -1 = 
1=1 
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where w is divided into M ( h )  number of triangular elements, each denoted by K1. Let Kt,o 

denote the master triangular element defined by 

Let SP(Kt,,,) denote the space of polynomials of degree < p on Kc,,, -Le., 

First, the shape functions for the master element Kc,,, are formed. To accomplish this, the 

barycentric coordinates are introduced via 

A1 = (1 - J - q / h ) / 2 ,  A2 = (1 + < - q/J3)/2,  A3 = q/&. 

Xi's form a partition of unity and X i  is identically equal to one at a vertex of Kt,,, and vanishes 

on the opposite side of  KC,^. The hierarchical shape functions on Kt,q consists of internal as well 

as external functions. The normalized antiderivatives of the Legendre polynomials are defined 

bY 

Now, the external shape functions consist of 3 nodal shape functions 

til and 3(p - 1) side shape functions Ni ( t , ~ ) ,  i = 1,. . . , p  - 1, j = 1,2,3.  The index j indicates 

one of three sides of  KC,^. Noting that &(&l)  = 0,  

qz(q) = ~ ( 1  - q2)yi(v), (1.4) 
1 i = 1,2.3,. . . 

where (pi(q) is a polynomial of degree i - 1. For instance, y l (q)  = -6, ( p 2 ( q )  = -mq and 

y3(7) = q ( 1  - 5v2), etc. The side shape functions are constructed as follows: 

N,!'](<, 77) = XZxSpi(X3 - X2) 

N,!2](& 7) = kjX1(pi(X1 - X3), i = 1,. . . , p  - 1, (1.5) 

Ni13](<,d = XlXZPi(X2 - All. 

From (1.4) and (1.5), there are 3 + 3(p - 1) shape functions. As dirn(SP(Kt,,)) = v, 
the remaining basis elements are constructed in terms of internal shape functions. 
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Clearly, nontrivial internal shape functions on Kc,? exists only if p 2 3. For p = 3, the bubble 

function on Kc,ll defined below serves as the internal function; 

Moreover, the collection I p (  Kc,,,) of higher-order internal shape functions can be constructed 

from 

Ip(Kc,q) = { ~ K ~ . , , v :  E sp-3(Kc,q)} = { b ~ ~ . , }  8 Sp-3(Kc,,), p 2 3. 

Let Th, h > 0, be a triangulation of w. let x = QL(L1, Lz, L3) and y = Qf(L1, La, L3) be the 

element mappings of the standard triangle Kc,,, to the lth triangular element K' E Th, e.g., the 

linear mapping onto K' with vertices {(xi, y~)}%,, 

The space of all polynomials of degree 5 p on K' is denoted by SP(K') and its basis can be 

formed from the shape functions of SP(Kc,,) described above by transforming them under QL 

and Qf. The finite element space SP~'(w, Th) is now defined. For w,  p 2 0 and k 2 0, 

Assume that a triangulation {Th}, h > 0, of w consists of {Kk}:T) and that hl = diarn(Kk), 

for 1 = 1,. . . , M(h). 

In the z-variable for through the thickness approximation, the local variable r is defined in 

the reference element [- 1,1] and r is mapped onto the reference element by Qz, i.e., 

Clearly, QL is a linear function defined by 

1 d 1  d 
2 2 2  2 z = Q z ( r )  = -(1 - T ) ( - - )  + - ( I +  T ) - ,  T E [-I, 11 

The Jacobian of Qz is constant 
dz d 
d r  2'  

In this paper, the basis functions of Pp([-l, 11) are taken to be the one-dimensional hierarchical 

shape functions. See [8] for a complete discussion of the basis elements used in the p and hpfinite 

element methods. 

- 

5 



For example, in approximating an element in H'[-l,l], with 1 = 0: $ i ( ~ )  = Pi-1(7-), 1 5 

i 5 p + 1, where Pi-1 is the Legendre polynomial of degree i - 1, form the hierarchical basis 

functions. With I = 1, the external ($1 and $2) and internal ( $ t i ,  i 2 3) shape functions are 

defined by 

Note that $ i ' ~  form an orthogonal family with respect to the energy inner product (., . ) E ,  

1 1 
( $ i ,  $ j ) E  J $I(t)$i(t)dt = S_, Pi(t)Pj(t)dt = & j .  

-1 

Also note that the internal shape functions satisfy 

For the case 1 = 2 and p 2 3, the four nodal shape functions and the remaining p - 3 internal 

shape functions given by 

In this case, the internal shape functions satisfy 

dj$i 
-(*l) = 0,  
d r j  

for 5 I i 5 p + 1 and j = 0 , l .  

For example, using the shape functions in (1.8), any element u E H1[-l, 11 can be approximated 

by up E P,([-l, l]), in the form 

(1.10) 

For approximating the solutions of parabolic problems with the homogeneous Dirichlet boundary 

condition, the first two terms will be dropped, as u(-1) = u( 1) = 0. A sequence of triangulations 

{Th}h>~ is called the quasiuniform mesh if 

for all h > 0, 
h 

diam(K) '" (1.11) 

6 



with h = maxK,T,, diam(K). and for some y > 0. PP(r) denotes the space of all polynomials of 

degree 5 p defined on r. 
The following is proved by BabuSka, Szabo and Katz in [l]. See also [2] by BabuSka and Suri 

on a related discussion. Here Ro denotes a bounded polygonal domain in R2. 

Theorem 1.3 Let u E Hk(R0). Then there exists a sequence zp E P p ( & , ) ,  p = 1 ,2 , .  . . , such 

that, f o r  any 0 5 1 5 k ,  

IIu - zpllZ,Ro 5 Cp-(k-"ll~llk,Ro, 

where C is independent of u and p .  

The parameters k and 1 are not necessarily integral. Their proof relies heavily on the approxi- 

mation power of the trigonometric polynomials. 

With 1 = 0 in Theorem 1.3 and using the usual duality argument, the results in Theorem 

i . 3  are further improved by BabuSka and Suri in 121 (theorem 2.Y), (see also a series of papers 

by Gui and BabuSka [9]), to  the hpfinite element setting as follows: 

Theorem 1.4 Let Th be a quasiunifonn partition of Ro. Then for k 2 1, u E Hk(R0), 

Note that Corollary 1.2 can be derived also from Theorem 1.4, and they establish the same 

result in terms of time variable approximation and spatial variable approximation, respectively. 

The corresponding error estimate in the 1 1  . I I H k ( a o )  is also available in 121. Now assume that no 

in Theorems 1.3 and 1.4 is R = w x [-$, $1 and consider the problem of approximating elements 

in H k ( w  x [-$, $1) by the tensor product space SPl>k(~ ,Th)  @I'm[-+, $1. Using Theorems 1.3 

and 1.4, the following is proved in [5]: 

Theorem 1.5 Let u E H k ( w  x [-$, $1). Then there exists ut E Spl7'(w,Th) @ P*([-$, $ I ) ,  

where vi = min(k,pi + 1) for i = 1,2  and h = maxKET,, diam(K), with Th a triangulation of w. 
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A straightforward extension of Theorem 1.5 provides the following which describes a total error 

estimate for approximating functions in H k ( w  x [-$, $1 x I )  by elements from SP1'Ic(w,Th) @ 

P P ' [ - d  2 '  d 21 8 PP"O 

Theorem 1.6 Let u E H k ( w  x [-$, $1 x I ) .  Then there ezists fi E S p l ~ k ( w ,  Th) @PE([ -$ ,  $1) €3 

pp3 (1) 7 

1121 - f i l / L z ( w x [ - ; , ; ] x I )  = O(h"P,k + d " P 2  + k;,,P;k)l 

where vi = min(k,pi + 1)7 i = 1,2 ,3  and h = maxKET,, d i a m ( K ) ,  with Th a triangulation of w 

and k,,, = mwiin<N kn. 

Proof: TakeXinV*(I ;X) usedinCorol1ary1.2tobeHk(wx[-$,$]). Letu* E VP3(1;Hk(wx  

[-$, $1)) be the element approximating u. From Corollary 1.2, 

where C1, C2 and C3 are constants independent of h, k,,,, d ,  p l ,  p2 and p3. 

Using (1.4), we obtain 

where C and b are independent of p17p2 and p3. 

2 p-Version of Discontinuous Galerkin Finite Element Method 

In this section, pversion of discontinuous Galerkin finite element method for the parabolic 

problem (1.1) is described. The main goal here is to provide an error analysis for the pfinite 

element method using the results from Section 1. The semidiscrete approximation equation 

(1.2) is now upgraded to a fully discretized equat,ion below. It is assumed as in Theorem 1.5 
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and Corollary 1.6 that the degree vectors in space, through-the-thickness and time are assumed 

to be p l ,  pa and p3 respectively. Define 

d d  
2 ' 2  

V I I ~  E PP3((I,),n = 1,2 , .  . . , N } ,  (2.1) W(Pl?PZJ'3) = {V:R+ -+ SP1?k @ pP2[-- - 1 :  

where 
d d  P3 

PP3(In) = {V( t )  = X t i :  v, E SPlIk  @ PPZ[-z, $}. 
i=O 

Then the fully discretized discontinuous Galerkin method can be described as follows: 

Find U E W@'>mJQ) such that for n = 1,2, .  . . , 

We consider in (1.1) only the case of isotropic materials along with Dirichlet boundary 

conditions. However, extensions to anisotropic materials as well as mixed boundary conditions 

where Neumann boundary conditions are incorporated are possible and the present analysis 

carries over to these cases. The thesis by Tomey [7] treats transversely anisotropic materials as 

well as isotropic materials along with a mixed boundary condition. 

The notation of [7] is followed. The solution u is approximated over K' x (-g, :) x I ,  using 

the outer tensor products: 

which is 
U l  v2 u3 

Equation (2.2) becomes 

Equation (2.4) can be written in the following matrix form [7] 
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where CKl,  KK1 and MK1 are, respect,ively, t,he element, capacitance, conductance (stiffness) 

and mass matrices, whereas H,I is the element load vector. Thesis by Tomey 171 describes in 

detail as to  how these matrices should be assembled. In the next section, we consider different 

bases in time variable, delineating an advantage of each choice of basis elements. The following 

theorem can be proved by minor modifications to  the proof of theorem 1.1, [3] and by making 

use of Theorem 1.6. 

Theorem 2.1 Let u E H k ( w  x [-:, $1 x I ) .  Suppose that there is a constant y such that the 

time steps k ,  satisfy k,  5 ykn+l, n = 1 , .  . . , N - 1 and let U" denote the solution of (2.2) 

approximating u at t,. Then there is a constant C depending only on  y and a constant p, where 

PK 2 p h ~  and p~ is the diameter of the carcie anscnbed an K for all K E Th, such that for  

n= 1 , 2 , . . . , N 7  

where Vi = min(k,pi  + l), i = 1,2,3; C1, C2 and C3 are constants independent of h, La,, d ,  

PI, P2 andP3. 

Similarly, Corollary 1.7 implies the following 

Corollary 2.2 Let u E Hm(w x [-:, :] x I ) .  Suppose that there is a constant y such that the 

time steps k,  satisfy k,  5 yk,+l, n = 1,. . . , N - 1 and let U" denote the solution of (2.2) 

approximating u at t,. Then there is a constant C depending only on  y and a constant p, where 

p~ 2 P h K  and p~ is the diameter of the circle inscribed an K for all K E Th, such that for 

72 = 1 , 2 , .  . . , N ,  
< Ce-bmin@im,m) 

1121 - U " l l L , ( w x [ - ~ , ~ ] x r )  - 

where C and b are independent of p l , ~  and p3. 

Remark 2.1: Maintaining throughout computation a certain accuracy of numerical solution 

obtained from (2.1) is always desirable and Theorem 2.1 gives an insight to the following adaptive 
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scheme. Suppose that a tolerance of 6 is required. Then, as h; d and IC,,, are known a priori, 

the minimum approximation degrees' requirement in spatial, through the thickness and time 

variable are obtained from 

Moreover, for the case of infinitely differentiable u, with p = min(pl,p;?,pg) where pi's satisfy 

inequalities in (2.6), Corollary 2.2 implies that 

Remark 2.2: Thus far, the case for the constant degree vectors was considered. Nonconstant 

degree vectors can also be incorporated easily from Theorem 1.1. For instance, nonconstant 

degree vector p = (p,&) can be derived from the inequality in Theorem 1.1. Note that the bound 

given in Theorem 1.1 combines all errors in time approximation over M ( I )  intervals. Thus, for 

each n = 1,2 , .  . . , M ( I ) ,  the error in disrectization in time variable over I ,  is given by 

for any 0 F sz I: min(p,, s,,). Since Wi N pi2'' as p, --+ 00, (2.6) becomes 

As kn7s are known, construct the degree vector p by requiring each component p, to satisfy 

A construction of nonconstant degree vector corresponding to a triangulation Th for the region 

w is similar. 

3 Discretizations in Time Variable. 

In this section, effects of the use of different basis elements t o  approximate the solution in time 

variable are considered. The solution u is approximated over K1 x (- g ,  $) x I, using the outer 

tensor products: 

U I ~ ~ ~ ( - ~ , ~ , ~ ~ ~  = (4 8 1c, B q T a n  = 3 a n .  (3.1) 
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To better illust,rate the choice of basis elements for time variable, we write a semidiscrete solution 

Un E PPn(In ,X)  by 
P n  

un = ~ j p ~ j . ~ .  
j =O 

Here E X are unknown coefficients to be determined. Vn is defined similarly. For con- 

venience, we let I = In and drop the time step index n. Substituting Un of (3.2) and the 

corresponding Vn into (1.2), we obtain the following: 

Find {~j};=~ c X such that 

P 

= C { / ( S , v i O i ) x * x x d t  + (Ul-1,vie:(tn-i)} for all {vi}:='=, C X. (3.3) 
i=o I 

Transforming the int,egrals into the reference interval [-1,1] under F-' and letting (see [ll]) 

1 

-1 
$ (v i )  E ( J  (9 0 F)eidt^,ui)X, .f:(vi) E (Ui- le i ( - l ) ,   vi)^, 

equation (3.3) becomes: 

Find the coefficient {~j};=~ c X such that for all { ~ j } : = ~  c X 

(3.4) 

Here IC = k,. The strong form of equation (3.4) is 

k -  k 
2 

P 

A i j ~ j  + - Bij A u ~  = 2c + @, i = 0,1, . . . p ,  (3.5) 
j = O  

where c = J!,(g o F)&dt^ and = U,,&-l). Hence, in order to execute the pversion of 

t,he finite element method, the following integrals must be computed for assembly of the global 

matrix. 

The set of the canonical polynomials 8,+1(t) = tV were used in [7] and the components of the 

matrices which represent A i j  and B i j  were computed exactly. We consider two other alternatives 

for 8. 
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First, we consider &(t) = (* ) : Let ~11, = ~ P , = o ( ~ ) v ~ ~ ( ~ ) .  Since u n - 1 , +  = 

the advantage of this basis is that the term (Un-'>+,vn-l!+) in (2.1) is simplified. Also, 
o"(-) ,  z 

and 

0 1 1 ... 1 

0 ;  2 p 

0 f ; ... 
3 ... P+l 

n 
P+2 . .  . .  . .  . ... . 
E 
2P 

1 2  0 - - ... 
P+l P t 2  

1 

1 

1 1 1  - 
P+ 1 

1 1 1  - 
p+; 

2 3 ... 
2 3 4 ... 

. _ . .  . 
1 1 1 1  _ _ _  

P+l p+2 p+3 ... - 2P+ 

7 

As stated in 1111, the ideal choice for 6, would be the one under which the matrices A and B 

diagonalize simultaneously. If the diagonalizations of A and B are possible, then equation (3.4) 

decouples into p + 1 independent equations, reducing the size of computation. The canonical 

basis and the basis just considered generate the full matrices for A and for 8. In order to select 

basis functions in time variable which takes into account of the structures of A and B7 we now 

consider the Legendre polynomials for 8. 

Second: The translated Legendre polynomials for &(t)  are considered. This is essentially 

the same as the normalized Legendre polynomials used in [ll]. We extend the discussion in 

[ll] by exhibiting the general form for A and state its characteristics. The orthogonal nature 

of the Legendre polynomials guarantees the matrix B to be diagonal. Hence it remains to  

analyze the matrix A. In [ll], it is stated that '..,this (diagonalization) seems not to be possible 

with time shape functions in R, but numerical experiments show that A ... is diagonalizable 

in C at least for 0 5 p 5 loo'. We are unable to provide a mathematical proof of their 
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statement at this point, but OUT investigation thus far indicates that A is non-defective (see, 

[4]), -i.e., the algebraic multiplicity and the geometric multiplicity of each eigenvalue are the 

same. Hence, A is diagonalizable over the complex field C .  In this paper, we propose to use the 

real Schur decomposition of the matrix A, rather than the diagonalization technique in 1111, to 

establish a solution scheme for (3.4). The real Schur decomposition leads to a modified backward 

substitution scheme. The method is mathematically justifiable for any degree p .  Moreover, the 

current method avoids complex number arithmetic which was necessary in [ll], and thus the 

cost of computation is approximately the same as [ll]. 

The advantage of this choice as basis elements in time variable lies in the formations of 

st" n-1 OOTdt, Jt","-l Odt as well as L:", O($)Tdt ,  all of which are of banded structures as seen 

below. Recall that Pt(x) denote the Legendre polynomial of degree z defined over [-1,1]. Let 

q t )  = 2 t  t,-t,-1 - - tn--t,-l and L:(t) = P l ( z n ( t ) )  for each n = 1 , 2 , .  . . , M ( I )  and i = 0 , 1 , .  . . . 
Obviously. 

Thus, 

and 

Also 
l o 1  

0 k,  0 k,  0 kn ... 

0 0 kn 0 kn 0 ... 
0 0 0 kn 0 IC, ... 
0 0 0 0 kn 0 . . .  
. . . . . . . . . . . . . . . . . . . . . 

The formation of the last matrix s,",:_, O (  $ ) T d t  requires some tedious but straightforward calcu- 

lations which are not so obvious. Thus, we include them below. Clearly, it is sufficient to derive 
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t,he following: 
0 2 0 2 0 2 ... 
0 0 2 0 2 0 ... 
0 0 0 2 0 2 ... 
0 0 0 0 2 0 ... 
. . . . . .  . . . . . . . . . . . . . . . 

For the Legendre polynomials of the first kind, pi(z),  i 2 0, z E [-1,1], first note that 

qi(-1) = Pzi(1) = 1, P,i+l(-l) = -1, and Pzi+l(l) = 1 for i 2 0. 

To derive (3.6), we must show that 

ll Pi(t)P,!(t)dt = 0,  for all i and j with i 2 j 2 0, (3.7) 

and 
1 
Pi(t)Pi+21+l(t)dt = 2, for all i 2 0 and 12 0. (3.8) 

Equations (3.7) and (3.8) are verified by induction. As Po(t) = 1, (3.7) is verified with i = 0. 

Also 

L 
1 

Po(t)PL,(t)dt = Po(t)P21(t)\L1 - J ~;(t)~,l(t)dt = 0, for all 2 2 0. l1 -1 

L1 -1  

and similarly 
1 

Po(t)P;,+,(t)dt = ~O(t)~2l+l(t)l!~ - J ~;(t)~2l+l(t)dt = 2, for all I 2 0. 

Now assume that (3.7) and (3.8) are satisfied for some i = i* - 1 and for all j such that 

i* - 1 2 j 2 0 and for all 1 2 0. First, for the diagonal element, 
1 

Pi.(t)P,'((t)dt = Pi.(t)Pi.(t)lll - J Pi*(t)Pi*(t)dt l1 -1 

implies that J:l Pi*(t)P$(t)dt = 0. Also, for i* > j 2 0, 

2 - 2 = 0 for i* - j odd, 

0 - 0 = 0 for i* - j even 

1 

-1 
pi*(t)T;'(t)dt = Pa*(t)P,(t)l', - 1 E.(t)Pj(t)dt = 

where the inductive assumption was used in computing the second integral. This shows (3.7) for 

all i and i 2 j 2 0. It remains to prove that J!l Pi* (t)Pi*+zl(t)dt = 0 and J:l Pi* (t)Pi.+21+1(t)dt = 

2 for all 1 2 0. The case for 1 = 0 is done. For 1 > 0, 
1 

-1 
Pi.(t)Pi*+,,(t)dt = Pi*(t)Pi*+,l(t)lll - J e*(t)Pi*+zl(t)dt. 

15 



The last integral is 0 by (3.6) and the term Pp(t)P,*+2~(t)15~ is 0 regardless of i” even or odd. 

Hence J!l Pp(t)E$+,,(t)dt = 0. J:l Pi*(t)P:!.+,,+,(t)dt = 2 is similar. Thus, (3.6) is verified. 

Now, from (3.6), it is clear that 

1 1 1 1 1  1 ... 

-1 1 1 1 1 1 ... 

1 -1 1 1 1 1 ... 

-1 1 -1 1 1 1 ... 

1 -1 1 -1 1 1 e.. 

. . .  . . . .  . . . .  . 

(3.9) 

Formula (3.9) provides a general construction method for the assembly of the pfinite element 

matrix with any order p when the Legendre polynomials are used in time variable. For p = 5, 

with normalizing factors incorporated, (3.9) can be used to derive the matrix A in [ll], (eq. 

(4.11)). Two observations on the matrix Ap+l are as follows: 

Theorem 3.1 Let Ap+l denote the ( p  + 1) x ( p  + 1) leading principle matrix of (3.6) for  each 

p = 0,1,. . .. Then Ap+l is invertible for each p .  

Proof: This follows immediately by noting that det(Ap+l) = 2P. 

The matrix Ap+l is not positive definite for some p .  However: 

Theorem 3.2 The matrix A,+, is non-negative definite for all n = 0,1,. . .. 

As in (3.2), denote the semidiscrete solution U as well as V in (1.2) as 

P P 

u=xujej, v=-j+jej 
j=O j=O 

(3.10) 

where the subscript n is dropped. Let Bi = Li, the transformed Legendre polynomial of degree i 

and bi = 8, the Legendre polynomial of degree i defined over [-1,1] in equations (3.3) and (3.4). 

Also, denote a basis for the finite element space SP1yk(w,Th) @P”[-g, E] for X by {~j};=~ with 

D = dirn(SP1Tk(w, Th) @ I‘m[-;, $1). The trial and test functions uj and vi in the semi-discrete 

system (3.3) above are further approximated by 

(3.11) 
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Subst,ituting (3.11) into (3.4), the fully discrete pfinite element system can be writ,ten as 

(ref. [ll]), for the unknown coefficient vectors iij = (uj ,  uj", . . . ,UP)' E RD, 

where 

and 

f; = (fj (S l ) ,  f j  ( s 2  7 . . . I .$ ( S D  )) 

f: = ( f f ( S l ) , . f f ( S 2 ) > . - .  7 . f f ( s D ) ) T .  

Note that the use of the translated Legendre polynomial served well because B u  = bij in 

(3.5). Equation (3.5) can be written in vector form as 

IC -. 
Aii + -[&.j]Aii = F ,  (3.13) 

2 

where F'= (~S~l (go .n)eodt^+U~- l$( - l ) ,  . . . , i S ~ l ( g  ozn)8,dt^+U~-lep(-l))T. In [ll], A 

is diagonalized and equation (3.13) is solved for u' = Q T Z  from 

k 
Q ~ A Q G  + -nu' = Q ~ @ .  

2 
(3.14) 

It is reported in Ill] that, as the result of their numerical experiments, the matrix Ap+l is 

diagonalizable up to  its order p = 100. Subsequently, equation (3.13) is decoupled via (3.14) 

into p + 1 independent scalar equations, each of which requires complex arithmetic to solve. A 

new approach which uses the real Schur decomposition is now presented. The new approach 

does not require the complex arithmetic. 

Theorem 3.3 (Real Schur Decomposition, [4] p.219) If A E Rnxn, then there exists an  orthog- 

onal matrix Q E Rnxn such that 

(3.15) 
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where each &i is eith,er a 1 x 1 matrix or a 2 x 2 matrix having complex conjugate eigenvalues 

of A .  

By Theorem 3.1, it is guaranteed that no 1 x 1 matrix in Schur decomposition for A is 0. 

Also, it is worth noting that the Schur decomposition is an orthogonal similarity transformation 

and thus avoid the computation of Q-l as required in the diagonalization process done in 

[ll]. Equation (3.14) is then solved by the backward substitution using block matrices. More 

specifically, GP-l and Gp are found from 

(3.16) 

or from 
k 

(&mM + ZS)7zP = @p, (3.17) 

according to &, being 2 x 2 or 1 x 1 matrix respectively. Here, we used the standard convention 

a M  bM 
thatif&,= [ 1 j , then &,M = ~ j . Computation proceeds to  find Gp-2 as 

cM dM 
well as GP-3 if &-lm-l is 2 x 2. Namely, assuming that &, is 2 x 2, if &-lm-l is a scala, 

then Gp-2 is found by solving 

If Rm-lm-l is 2 x 2, then GP-3 and Gp-2 are found from 

[&-lrn- lM+ *S]  [ 511 = [ Fp-3 1 ] - [&-1,M] [ ';'I. 
9 - 2  Fp-2 2 

The case for 1 x 1 krn is similar. It is important to recall that the computation thus described 

can be completed because of Theorem 3.1. 

4 Start-up Singularities: 

In this final section, we make some comments on the start-up singularities normally associated 

with the parabolic problems. The regularity assumptions in Theorem 2.1 and Corollary 2.2 were 

taken so that the current fully pfinite element method could provide numerical solutions where 
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the discretization error associated in time can be made consistent with the discretization error 

associated in space. However. as indicated earlier. time singularities arise due to various types 

of incompatible initial data. To capture such singularities, hpversion of finite element method 

must be considered. In [lo], a nonuniform time discretization is determined by considering the 

conditions on f as well as the initial function uo in (1.1). More specifically, the function f is 

assumed to be piecewise analytic as a function on [0, T]  with values in H ,  Le., 

with constants C and d independent of 1 and t .  Also, uo is assumed to  be in He = (H,X)e,2,  

0 5 0 5 1, where ( H ,  X)e,2 is a space between H and X determined by the K-method of inter- 

polation, (see [8]). An h-version of the discontinuous Galerkin finite element method developed 

in [5] establishes a nonuniform time discretization scheme which is based upon the behavior of 

Ilu(')(t)llx. The direct inspection into the smoothness of Ilu(')(t) IIx in determining time parti- 

tion takes into account of variniis pnssihi!ities ilnder which the s t~ r t -np  s i ~ ~ ~ ! ~ ~ i i i ~  as=c&ed 

with parabolic problems arise. Analysis used in determining the nonuniform graded partition 

points in [5] is distinct from the one used in [lo] and an example is provided in [ 5 ] ,  which demon- 

strates that the method of Kaneko, Bey and Hou gives more sparse time partition points than 

the ones given in [lo]. 
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